
N-Tier DB Access

Lee Lueking

CMS Detector DB CD Briefing
Oct. 6, 2003

Motivation for Adding a
Middle-tier (MT)

• MT provides DB connection management
• Maintenance is simplified by decoupling DB and client interfaces.

Releases, UPS products, etc. for client and MT are usually independent.
• Operational support is easier because one monitors a few MT servers,

instead of hundreds of clients.
• DB access and load balancing polices can be added easily, as needed, to

the MT.
• Excellent monitoring features available.
• Configuration flexibility.
• View in the DB can be different from view inside jobs without changing

the client.
• On-demand population of the MT cache, and automated cache

management, means “start it and forget it” operation.
• The caching drastically reduces bandwidth to oracle server and

significantly lowers the latency for data access
• Network interruptions are less significant with the MT caching in place.

Design Proposal Overview (CDF)
• Build a middle-tier using:

– Web services for MT-client communication with Client
– Python or Java MT server using DAN (D0) experience for DB connection and

caching
– Create a simple client interface using HTTP.

Oracle
Server

Use Tomcat or straight Apache server

Connection Management and
Memory cache

HTTP
Server Client

Proxy
Server Client

Server side cache

Getting started

• Starting with a simple prototype to test
performance and scaling (see diagram on right)
– Johns Hopkins is helping to do this work
– Consulting from CEPA-APS.

• Understanding other projects which may be
useful:
– CMS has a similar framework called

CLARENS used for data analysis which
has ROOT and other modules.
http://clarens.sf.net

– Spitfire is a database access project in
EDG WP2 that uses web services
http://edg-wp2.web.cern.ch/edg-
wp2/spitfire/

ClientsClients

Tomcat

Conversion
modules

DB

Java
code

http://clarens.sf.net/

	N-Tier DB Access
	Motivation for Adding a Middle-tier (MT)
	Design Proposal Overview (CDF)
	Getting started

